
Chapter 12

Context-Free Grammars

12.1 Introduction

English grammar has rules for constructing sentences; e.g.,

1. A sentence can be a subject followed by a predicate .

2. A subject can be a noun-phrase .

3. A noun-phrase can be an adjective followed by a noun-phrase .

4. A noun-phrase can be an article followed by a noun-phrase .

5. A noun-phrase can be a noun .

6. A predicate can be a verb followed by a noun-phrase .

7. A noun can be:
person fish stapler book

8. A verb can be:
buries touches grabs eats

9. An adjective can be:
big small

10. An article can be:
the a an

12-1

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-2

These rules can be used to construct the following sentence:

The small person eats the big fish

sentence ⇒ subject predicate Rule 1
⇒ noun-phrase predicate Rule 2
⇒ noun-phrase verb noun-phrase Rule 6
⇒ article noun-phrase verb noun-phrase Rule 4
⇒ article adjective noun-phrase verb noun-phrase Rule 3
⇒ article adjective noun verb noun-phrase Rule 5
⇒ article adjective noun verb article noun-phrase Rule 4
⇒ article adjective noun verb article adjective noun-phrase Rule 3
⇒ article adjective noun verb article adjective noun Rule 5
⇒ the adjective noun verb article adjective noun Rule 10
⇒ the small noun verb article adjective noun Rule 9
⇒ the small person verb article adjective noun Rule 7
⇒ the small person eats article adjective noun Rule 8
⇒ the small person eats the adjective noun Rule 10
⇒ the small person eats the big noun Rule 9
⇒ the small person eats the big fish Rule 7

Definition: The things that cannot be replaced by anything are called ter-
minals.

Definition: The things that must be replaced by other things are called
nonterminals.

In the above example,

• small and eats are terminals.

• noun-phrase and verb are nonterminals.

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-3

Example: restricted class of arithmetic expressions on integers.

start → AE
AE → AE + AE
AE → AE − AE
AE → AE ∗ AE
AE → AE / AE
AE → AE ∗∗ AE
AE → (AE)
AE → −AE
AE → ANY-NUMBER

• nonterminals: start , AE

• terminals: ANY-NUMBER , +, −, ∗, /, ∗∗, (,)

• Can generate the arithmetic expression

ANY-NUMBER +(ANY-NUMBER −ANY-NUMBER)/ANY-NUMBER

as follows:

start ⇒ AE
⇒ AE + AE
⇒ AE + AE / AE
⇒ AE + (AE) / AE
⇒ AE + (AE − AE) / AE
⇒ ANY-NUMBER + (AE − AE) / AE
⇒ ANY-NUMBER + (ANY-NUMBER − AE) / AE
⇒ ANY-NUMBER + (ANY-NUMBER − ANY-NUMBER) / AE
⇒ ANY-NUMBER + (ANY-NUMBER − ANY-NUMBER) / ANY-NUMBER

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-4

Could also make ANY-NUMBER a nonterminal:

Rule 1 ANY-NUMBER → FIRST-DIGIT
Rule 2 FIRST-DIGIT → FIRST-DIGIT OTHER-DIGIT
Rule 3 FIRST-DIGIT → 1 2 3 4 5 6 7 8 9
Rule 4 OTHER-DIGIT → 0 1 2 3 4 5 6 7 8 9

In this case,

• nonterminals: ANY-NUMBER , FIRST-DIGIT , OTHER-DIGIT

• terminals: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Can produce the number 90210 as follows:

Rule 1 ANY-NUMBER ⇒ FIRST-DIGIT
Rule 2 ⇒ FIRST-DIGIT OTHER-DIGIT
Rule 2 ⇒ FIRST-DIGIT OTHER-DIGIT OTHER-DIGIT
Rule 2 ⇒ FIRST-DIGIT OTHER-DIGIT OTHER-DIGIT OTHER-DIGIT
Rule 2 ⇒ FIRST-DIGIT OTHER-DIGIT OTHER-DIGIT OTHER-DIGIT OTHER-DIGIT
Rule 3 ⇒ 9 OTHER-DIGIT OTHER-DIGIT OTHER-DIGIT OTHER-DIGIT
Rule 4 ⇒ 9 0 OTHER-DIGIT OTHER-DIGIT OTHER-DIGIT
Rule 4 ⇒ 9 0 2 OTHER-DIGIT OTHER-DIGIT
Rule 4 ⇒ 9 0 2 1 OTHER-DIGIT
Rule 4 ⇒ 9 0 2 1 0

Note that we had rules of the form:

one nonterminal → string of nonterminals

or
one nonterminal → choice of terminals

Definition: The sequence of applications of the rules that produces the
finished string of terminals from the starting symbol is called a derivation or
production.

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-5

12.2 Context-Free Grammars

Example: terminals: Σ = {a}
nonterminal: Ω = {S}
productions:

S → aS

S → Λ

• Can generate a4 as follows:

S ⇒ aS

⇒ aaS

⇒ aaaS

⇒ aaaaS

⇒ aaaaΛ = aaaa

Example: terminal: a
nonterminal: S
productions:

S → SS

S → a

S → Λ

Can write this in more compact notation:

S → SS | a | Λ

which is called the Backus Normal Form or Backus-Naur Form (BNF).

CFL is a∗

Can generate a2 as follows:

S ⇒ SS

⇒ SSS

⇒ SSa

⇒ SSSa

⇒ SaSa

⇒ ΛaSa

⇒ ΛaΛa = aa

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-6

In previous example, unique way to generate any word.

Here, each word in CFL has infinitely many derivations.

Definition: A context-free grammar (CFG) is a collection G = (Σ, Ω, R, S),
with

1. A (finite) alphabet Σ of letters called terminals from which we make
strings that will be the words of the language.

2. A finite set Ω of symbols called nonterminals, one of which is the
symbol S (i.e., S ∈ Ω), standing for “start here.”

3. A finite set R of productions, with R ⊂ Ω×(Σ+Ω)∗. If a production
(N,U) ∈ R with N ∈ Ω and U ∈ (Σ + Ω)∗, then we write the
production as

N → U .

Thus, each production is of the form

one nonterminal → finite string of terminals and/or nonterminals

where the strings of terminals, nonterminals can consist of only
terminals or of only nonterminals, or any mixture of terminals and
nonterminals or even the empty string. We require that at least one
production has the nonterminal S as its left side.

Convention:

Terminals will typically be smallcase letters.

Nonterminals will typically be uppercase letters.

Definition: The language generated (defined, derived, produced) by a
CFG G is the set of all strings of terminals that can be produced from
the start symbol S using the productions as substitutions. A language
generated by a CFG G is called a context-free language (CFL) and is
denoted by L(G).

Example: terminals: Σ = {a}
nonterminal: Ω = {S}
productions:

S → aS

S → Λ

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-7

Let L1 the language generated by this CFG, and let L2 be the
language generated by regular expression a∗.

Claim: L1 = L2.

Proof:

∗ We first show that L2 ⊂ L1.

· Consider an ∈ L2 for n ≥ 1. We can generate an by using
first production n times, and then second production.

· Can generate Λ ∈ L2 by using second production only.

· Hence L2 ⊂ L1.

∗ We now show that L1 ⊂ L2.

· Since a is the only terminal, CFG can only produce strings
having only a’s.

· Thus, L1 ⊂ L2.

Note that

Two types of arrows:
→ used in statement of productions
⇒ used in derivation of word

in the above derivation of a4, there were many unfinished stages
that consisted of both terminals and nonterminals. These are called
working strings.

Λ is neither a nonterminal (since it cannot be replaced with some-
thing else) nor a terminal (since it disappears from the string).

12.3 Examples

Example: terminals: a, b
nonterminals: S
productions:

S → aS

S → bS

S → a

S → b

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-8

More compact notation:

S → aS | bS | a | b

Can produce the word abbab as follows:

S ⇒ aS

⇒ abS

⇒ abbS

⇒ abbaS

⇒ abbab

Let L1 be the CFL, and let L2 be the language generated by the
regular expression (a + b)+.

Claim: L1 = L2.

Proof:

First we show that L2 ⊂ L1.

∗ Consider any string w ∈ L2.

∗ Read letters of w from left to right.

∗ For each letter read in, if it is not the last, then

· use the production S → aS if the letter is a or

· use the production S → bS if the letter is b

∗ For the last letter of the word,

· use the production S → a if the letter is a or

· use the production S → b if the letter is b

∗ In each stage of the derivation, the working string has the form

(string of terminals)S

Hence, we have shown how to generate w using the CFG, which
means that w ∈ L1.

Hence, L2 ⊂ L1.

• Now we show that L1 ⊂ L2.

To show this, we need to show that if w ∈ L1, then w ∈ L2.

This is equivalent to showing that if w 6∈ L2, then w 6∈ L1.

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-9

Note that the only string w 6∈ L2 is w = Λ.

But note that Λ cannot be generated by the CFG, so Λ 6∈ L1.

Hence, we have proven that L1 ⊂ L2.

Example: terminals: a, b
nonterminals: S, X, Y
productions:

S → X | Y

X → Λ

Y → aY | bY | a | b

• Note that if we use first production (S → X), then the only word we
can generate is Λ.

• The second production (S → Y) leads to a collection of productions
identical to the previous example.

• Thus, the second production produces (a + b)+.

• CFL is (a + b)∗

Example: terminals: a, b
nonterminals: S
productions:

S → aS | bS | a | b | Λ

• CFL is (a + b)∗

• For this CFG, the sequence of productions to generate any word is not
unique.

• e.g., can generate bab using

S ⇒ bS

⇒ baS

⇒ babS

⇒ babΛ = bab

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-10

or

S ⇒ bS

⇒ baS

⇒ bab

Example: terminals: a, b
nonterminals: S, X
productions:

S → XaaX

X → aX | bX | Λ

• The last set of productions generates any word from Σ∗.

• CFL is (a + b)∗aa(a + b)∗

• Can generate abbaaba as follows:

S ⇒ XaaX

⇒ aXaaX

⇒ abXaaX

⇒ abbXaaX

⇒ abbΛaaX = abbaaX

⇒ abbaabX

⇒ abbaabaX

⇒ abbaabaΛ = abbaaba

Example: terminals: a, b
nonterminals: S, X, Y
productions:

S → XY

X → aX | bX | a

Y → Y a | Y b | a

• X productions can produce words ending with a.

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-11

• Y productions can produce words starting with a.

• CFL is (a + b)∗aa(a + b)∗

• Can generate abbaaba as follows:

S ⇒ XY

⇒ aXY

⇒ abXY

⇒ abbXY

⇒ abbaY

⇒ abbaY a

⇒ abbaY ba

⇒ abbaaba

Example: Give CFGs for each of the following languages over the alphabet
Σ = {a, b}:

1. {anbn : n ≥ 0}

2. PALINDROME

3. EVEN-PALINDROME

4. ODD-PALINDROME

Example: terminals: a, b
nonterminals: S, B, U
productions:

S → SS | BS | SB | Λ | USU

B → aa | bb

U → ab | ba

Show that this generates EVEN-EVEN

• Note that starting from B, we can generate a balanced pair, i.e., either
aa or bb.

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-12

• Starting from U , we can generate an unbalanced pair, i.e., either ab or
ba.

• First show that every word in EVEN-EVEN can be generated using these
productions.

Recall that EVEN-EVEN has regular expression

[aa + bb + (ab + ba)(aa + bb)∗(ab + ba)]∗

Three types of syllables:

1. aa,

2. bb,

3. (ab + ba)(aa + bb)∗(ab + ba)

Consider any word generated from the regular expression for EVEN-
EVEN. Let’s examine the way it was generated using the regular
expression, and show how to generate the same word using our
CFG.

Start our derivation using the CFG from S.

Every time we iterate the outer star in the regular expression, we
choose one of the three syllables.

1. If we choose a syllable of type 1, then first use the production
S → BS and then the production B → aa. Thus, we end up
with a working string of aaS for this iteration of the outer star.

2. If we choose a syllable of type 2, then first use the production
S → BS and then the production B → bb. Thus, we end up
with a working string of bbS for this iteration of the outer star.

3. If we choose a syllable of type 3, then

(a) First use the production S → SS.

(b) Then change the first S using the production S → USU ,
resulting in USUS.

(c) If the first (ab+ba) in the syllable (ab+ba)(aa+bb)∗(ab+
ba) is used to generate ab, then replace the first U in USUS
using the production U → ab, resulting in abSUS. If the
first (ab + ba) in (ab + ba)(aa + bb)∗(ab + ba) is used
to generate ba, then replace the first U in USUS using the
production U → ba, resulting in baSUS. Do the same for
the second (ab+ba) in (ab+ba)(aa+bb)∗(ab+ba). Thus,

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-13

we now have xSyS as a working string for this iteration of
the outer star of the regular expression, where x is either
ab or ba, and y is either ab or ba.

(d) Now suppose the (aa + bb)∗ is iterated n times, n ≥ 0. If
n = 0, then change the first S in xSyS using the production
S → Λ, resulting in xΛyS = xyS. If n ≥ 1, then change
the first S in xSyS using the production S → BS and do
this n times, resulting in xBBB · · ·BSyS, where there are
n B’s in the clump of B’s. Then change the first S using
the production S → Λ, resulting in xBBB · · ·BΛyS =
xBBB · · ·ByS, where there are n B’s in the clump of B’s.
Finally, if on the kth iteration, k ≤ n, of the ∗ in (aa +
bb)∗ we generated aa, then replace the kth B using the
production B → aa. If on the kth iteration, k ≤ n, of the
∗ in (aa + bb)∗ we generated bb, then replace the kth B
using the production B → bb.

After completing all of the iterations of the outer star in the regular
expression, use the production S → Λ.

e.g., for word babbabaa ∈ EVEN-EVEN,

S ⇒ SS

⇒ USUS

⇒ baSUS

⇒ baBSUS

⇒ babbSUS

⇒ babbΛUS = babbUS

⇒ babbabS

⇒ babbabBS

⇒ babbabaaS

⇒ babbabaaΛ = babbabaa

• Now show that all words generated by these productions are in EVEN-
EVEN.

all words derived from S can be decomposed into two-letter sylla-
bles.

unbalanced syllables (ab and ba) come into working string in pairs,
which adds two a’s and two b’s.

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-14

balanced syllables add two of one letter and none of the other

thus, the sum total of a’s will be even, and the sum total of b’s will
be even

Thus, word generated by productions will be in EVEN-EVEN.

Example: terminals: a, b
nonterminals: S, A, B
productions:

S → aB | bA

A → a | aS | bAA

B → b | bS | aBB

This generates the language EQUAL, which consists of all strings of positive
length and that have an equal number of a’s and b’s.

Proof. Need to show two things:

1. every word in EQUAL can be generated using our productions.

2. every word generated by our productions is in EQUAL.

First we show 1.

• We make three claims:

Claim 1: All words in EQUAL can be generated by some sequence of
productions beginning with the start symbol S.

Claim 2: All words that have one more a than b’s can be generated
from these productions by starting with the nonterminal A.

Claim 3: All words that have one more b than a’s can be generated
from these productions by starting with the nonterminal B.

• We will prove that these three claims hold by contradiction.

• Assume that one of the three claims does not hold.

• Then there is some smallest word w that violates one of the claims.

• All words shorter than w must satisfy the three claims.

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-15

• First assume that w violates Claim 1.

This means that w is in EQUAL but cannot be generated starting
with S.

Assume that w starts with a and that w = aw1.

Since w ∈ EQUAL, w1 must have exactly one more b than a’s.

However, w1 is shorter than w.

Thus, we must be able to generate w1 starting with B; i.e.,

B ⇒ · · · ⇒ w1

But then
S ⇒ aB ⇒ · · · ⇒ aw1 = w

which is a contradiction.

We similarly reach a contradiction when the first letter of w is b.

Thus, w cannot violate Claim 1.

• Now assume that w violates Claim 2.

This means that w has one more a than b’s but cannot be generated
starting with A.

First assume that w starts with a.

∗ Then w = aw1, where w1 ∈ EQUAL.

∗ Since w1 is shorter than w, we must be able to generate w1

starting with S; i.e.,

S ⇒ · · · ⇒ w1

∗ But then
A ⇒ aS ⇒ · · · ⇒ aw1 = w

which is a contradiction.

Now assume that w starts with b.

∗ Then if we write w = bw1, then w1 has two more a’s than b’s.

∗ We now split w1 = w11w12, where w11 is the part of w1 scanning
from left to right until there is exactly one more a than b’s, and
let w12 be the rest of w1.

∗ Note that w12 also has exactly one more a than b’s.

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-16

∗ Since w11 and w12 are both shorter than w, we must be able to
generate each of them starting with A; i.e.,

A ⇒ · · · ⇒ w11

and
A ⇒ · · · ⇒ w12

∗ But then

A ⇒ bAA ⇒ · · · ⇒ bw11w12 = bw1 = w

which is a contradiction.

Thus we have shown that Claim 2 must hold.

• We can similarly show that Claim 3 must hold.

• Thus, all 3 claims hold, and so in particular, Claim 1 holds: all words in
EQUAL can be generated starting from S.

Now we show 2 holds: every word generated by our productions is in EQUAL.

• We again make 3 claims

Claim 4 All words generated from S are in EQUAL.

Claim 5 All words generated from A have one more a than b’s.

Claim 6 All words generated from B have one more b than a’s.

• We will show that these 3 claims hold by contradiction.

• Assume that one of the three claims does not hold.

• Then there is some smallest word w generated from S, A, or B that does
not have the required property.

• All words shorter than w must satisfy the three claims.

• First assume that w violates Claim 4.

We have assumed that w can be generated from S but is not in
EQUAL.

Assume that the first letter of w is a.

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-17

Then w was generated by first using the production S → aB.

To generate w, this B generates a word w1 which is shorter than w
and by assumption w1 has one more b than a’s.

This implies that w has an equal number of a’s and b’s, which is a
contradiction.

We get a similar contridiction if the first letter of w is b.

• Now assume that w violates Claim 5.

We have assumed that w can be generated from A but does not
have exactly one more a than b’s.

w could not have been generated by A → a since w = a, which
satisfies the requirement.

Suppose w was generated by first using the production A → aS.

∗ Then to generate the rest of w, we would have to start from S
to generate w1, where w = aw1.

∗ However, since w1 is shorter than w and w1 is generated starting
with S, we must have that w1 ∈ EQUAL.

∗ This implies that w has exactly one more a than b’s, which is
a contradiction.

Suppose w was generated by first using the production A → bAA.

∗ To generate the rest of w, each of the A’s need to generate
strings w1 and w2 which are shorter than w such that w =
bw1w2.

∗ However, since w1 and w2 are shorter than w, we must have
that w1 and w2 each have exactly one more a than b’s.

∗ Hence, w = bw1w2 must have exactly one more a than b’s,
which is a contradiction.

Thus, we have shown that Claim 5 must hold

• We can similarly show that Claim 6 must hold.

• Thus, all of the claims hold, and in particular, Claim 4: all words gen-
erated from S ∈ EQUAL.

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-18

12.4 Trees

Can use a tree to illustrate how a word is derived from a CFG.

Definition: These trees are called syntax trees, parse trees, generation trees,
production trees, or derivation trees.

Example: CFG:
terminals: a, b
nonterminals: S, A
productions:

S → AAA | A

A → AA | aA | Ab | a | b

String abaaba has the following derivation:

S ⇒ AAA

⇒ aAAA

⇒ abAA

⇒ abAbA

⇒ abaAbA

⇒ abaabA

⇒ abaaba

which corresponds to the following derivation tree:

S

/ | \

/ | \

/ | \

/ | \

A A A

/ | | \ |

/ | | \ |

a A A b a

| / \

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-19

| / \

b a A

|

|

a

Example: CFG for simplified arithmetic expressions.
terminals: +, ∗, 0, 1, 2, . . . , 9
nonterminals: S
productions:

S → S + S | S ∗ S | 0 | 1 | 2 | · · · | 9

• Consider the expression 2 ∗ 3 + 4.

• Ambiguous how to evaluate this:

• Does this mean (2 ∗ 3) + 4 = 10 or 2 ∗ (3 + 4) = 14 ?

• Can eliminate ambiguity by examining the two possible derivation trees

S S

/ | \ / | \

/ | \ / | \

/ | \ / | \

/ | \ / | \

S + S S * S

/ | \ | | / | \

/ | \ | | / | \

2 * 3 4 2 3 + 4

Eliminate the S’s as follows:

+ *

/ \ / \

/ \ / \

/ \ / \

/ \ / \

* 4 2 +

/ \ / \

/ \ / \

2 3 3 4

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-20

Note that we can construct a new notation for mathematical expressions:

• start at top of tree

• walk around tree keeping left hand touching tree

• first time hit each terminal, print it out.

This gives us a string which is in operator prefix notation or Polish notation.

In above examples,

• first tree yields
+ ∗ 2 3 4

• second tree yields
∗ 2 + 3 4

To evaluate the string:

1. scan string from left to right.

2. the first time we read a substring of the form “operator-operand-operand”
(o-o-o), replace the three symbols with the one result of the indicated
arithmetic calculation.

3. go back to step 1

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-21

Example: (from above)

• first tree yields:

string first o-o-o substring
+ ∗ 2 3 4 ∗ 2 3

+ 6 4 + 6 4
10

• second tree yields:

string first o-o-o substring
∗ 2 + 3 4 + 3 4
∗ 2 7 ∗ 2 7
14

Example: Consider the arithmetic expression:

3 + 4 ∗ 6 + 2 + 8 + 1 ∗ 5 + 9 ∗ 7

There are many ways to evaluate this expression, one of which is as

((3 + 4) ∗ (6 + 2) + ((8 + 1) ∗ 5) + 9) ∗ 7

This interpretation has

• derivation tree:

*

/ \

+ 7

/ \

+ 9

/ \

/ \

/ \

* *

/ \ / \

/ \ / \

+ + + 5

/ \ / \ / \

3 4 6 2 8 1

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-22

• prefix notation:

∗ + + ∗ + 3 4 + 6 2 ∗ + 8 1 5 9 7

• can evaluate prefix notation expression:

string first o-o-o substring
∗ + + ∗ + 3 4 + 6 2 ∗ + 8 1 5 9 7 + 3 4
∗ + + ∗ 7 + 6 2 ∗ + 8 1 5 9 7 + 6 2
∗ + + ∗ 7 8 ∗ + 8 1 5 9 7 ∗ 7 8
∗ + + 56 ∗ + 8 1 5 9 7 + 8 1
∗ + + 56 ∗ 9 5 9 7 ∗ 9 5
∗ + + 56 45 9 7 + 56 45
∗ + 101 9 7 + 101 9
∗ 110 7 ∗ 110 7

770

Example:
terminals: a, b
nonterminals: S, A, B
productions:

S → AB

A → a

B → b

Can produce word ab in two ways:

1. S ⇒ AB ⇒ aB ⇒ ab

2. S ⇒ AB ⇒ Ab ⇒ ab

However, both derivations have the same syntax tree:

S

/ \

A B

| |

a b

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-23

Definition: A CFG is ambiguous if for at least one word in its CFL there are
two possible derivations of the word that correspond to two different syntax
trees.

Example: PALINDROME
terminals: a, b
nonterminals: S
productions:

S → aSa | bSb | a | b | Λ

Can generate the word babbab as follows:

S ⇒ bSb

⇒ baSab

⇒ babSbab

⇒ babbab

which has derivation tree:

S

/|\

b S b

/|\

a S a

/|\

b S b

|

^

Can show that this CFG is unambiguous.

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-24

Example:
terminals: a, b
nonterminals: S
productions:

S → aS | Sa | a

The word aa can be generated by two different trees:

S S

/ \ / \

a S S a

| |

a a

Therefore, this CFG is ambiguous.

Example: terminals: a, b
nonterminals: S
productions:

S → aS | a

The CFL for this CFG is the same as above.

The word aa can now be generated by only one tree:

S

/ \

a S

|

a

Therefore, this CFG is unambiguous.

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-25

Example:
terminals: a, b
nonterminals: S, X
productions:

S → aS | aSb | X

X → Xa | a

The word aa has two different derivations that correspond to different syntax
trees:

1. S ⇒ aS ⇒ aX → aa

S

/ \

a S

|

X

|

a

2. S ⇒ X ⇒ Xa → aa

S

|

X

/ \

X a

|

a

Thus, this CFG is ambiguous.

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-26

Definition: For a given CFG, the total language tree is the tree

• with root S,

• whose children are all the productions of S,

• whose second descendents are all the working strings that can be con-
structed by applying one production to the leftmost nonterminal in each
of the children,

• and so on.

Example:
terminals: a, b
nonterminals: S, X
productions:

S → aX | Xa | aXbXa

X → ba | ab

This CFG has total language tree as follows:

S

/ | \

/ | \

/ | \

/ | \

/ | \

aX Xa aXbXa

/ | / | / \

/ | / | / \

aba aab baa aba ababXa aabbXa

/ \ / \

ababbaa abababa aabbbaa aabbaba

The CFL is finite.

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-27

Example:
terminals: a, b
nonterminals: S, X
productions:

S → aSb | aX

X → bX | a

Total language tree:

S

/ \

/ \

/ \

/ \

/ \

/ \

aSb aX

/ \ / \

/ \ / \

aaSbb aaXb abX aa

/ \ / \ / \

aaaSbbb aaaXbb aabXb aaab abbX aba

. . . .

. . . .

. . . .

CFL is infinite.

CHAPTER 12. CONTEXT-FREE GRAMMARS 12-28

Example: terminals: a
nonterminals: S, X
productions:

S → X | a

X → aX

Total language tree:

S

/ \

X a

|

aX

|

aaX

.

.

.

Tree is infinite, but CFL = {a}.

