
Chapter 7

Kleene’s Theorem

7.1 Kleene’s Theorem

The following theorem is the most important and fundamental result in the
theory of FA’s:

Theorem 6 Any language that can be defined by either

• regular expression, or

• finite automata, or

• transition graph

can be defined by all three methods.

Proof. The proof has three parts:

Part 1: (FA ⇒ TG) Every language that can be defined by an FA can also
be defined by a transition graph.

Part 2: (TG ⇒ RegExp) Every language that can be defined by a transition
graph can also be defined by a regular expression.

Part 3: (RegExp ⇒ FA) Every language that can be defined by a regular
expression can also be defined by an FA.

7-1

CHAPTER 7. KLEENE’S THEOREM 7-2

7.2 Proof of Part 1: FA ⇒ TG

• We previously saw that every FA is also a transition graph.

• Hence, any language that has been defined by a FA can also be defined
by a transition graph.

7.3 Proof of Part 2: TG ⇒ RegExp

• We will give a constructive algorithm for proving part 2.

• Thus, we will describe an algorithm to take any transition graph T and
form a regular expression corresponding to it.

• The algorithm will work for any transition graph T .

• The algorithm will finish in finite time.

An overview of the algorithm is as follows:

• Start with any transition graph T .

• First, transform it into an equivalent transition graph having only one
start state and one final state.

• In each following step, eliminate either some states or some arcs by
transforming the TG into another equivalent one.

• We do this by replacing the strings labelling arcs with regular expres-
sions.

• We can traverse an arc labelled with a regular expression using any string
that can be generated by the regular expression.

• End up with a TG having only two states, start and final, and one arc
going from start to final.

• The final TG will have a regular expression on its one arc

• Note that in each step we eliminate some states or arcs.

• Since the original TG has a finite number of states and arcs, the algo-
rithm will terminate in a finite number of iterations.

CHAPTER 7. KLEENE’S THEOREM 7-3

Algorithm:

1. If T has more than one start state, add a new state and add arcs labeled
Λ going to each of the original start states.

=>

2

3

4

b
a

a

b

...

 1

-
/\

/\

1 - 3

4

b
a

a

b

...

2 -

2. If T has more than one final state, add a new state and add arcs labeled
Λ going from each of the original final states to the new state. Need to
make sure the final state is different than the start state.

...

+

+

a

b

aa, b

a, b

b => ...

a

b

aa, b

a, b

b +

/\

/\

CHAPTER 7. KLEENE’S THEOREM 7-4

3. Now we give an iterative procedure for eliminating states and arcs

(a) If T has some state with n > 1 loops circling back to itself, where the
loops are labeled with regular expressions r1, r2, . . . , rn, then replace
the n loops with a single loop labeled with the regular expression
r1 + r2 + · · ·+ rn.

r 1

r 2

r 3

=> r + r + r1 2 3

(b) If two states are connected by n > 1 direct arcs in the same di-
rection, where the arcs are labelled with the regular expressions
r1, r2, . . . , rn, then replace the n arcs with a single arc labeled with
the regular expression r1 + r2 + · · ·+ rn.

r

r
r + r

1

2
1

=>

2

CHAPTER 7. KLEENE’S THEOREM 7-5

(c) Bypass operation:

i. If there are three states x, y, z such that

• there is an arc from x to y labelled with the regular expres-
sion r1 and

• an arc from y to z labelled with the regular expression r2,

then replace the two arcs and the state y with a single arc from
x to z labelled with the regular expression r1r2.

x y z x z

r r r r1 2 1 2=>

r3

x y z x z

r r r r1 2 1=> 3 2*r

CHAPTER 7. KLEENE’S THEOREM 7-6

ii. If there are

• n+2 states x, y, z1, z2, . . . , zn such that there is an arc from
x to y labelled with the regular expression r0, and

• an arc from y to zi, i = 1, 2, . . . , n, labelled with the regular
expression ri, and

• an arc from y back to itself labelled with regular expression
rn+1,

then replace the n + 1 original arcs and the state y with n
arcs from x to zi, i = 1, 2, . . . , n, each labelled with the regular
expression r0rn+1ri.

z

z

z

1

2

n

.

.

.

z

z

z

1

2

n

.

.

.

x xy
r

r

r
r

0

1

n+1

2r =>

0 n+11

0 n+12

0 n+1n

r r* r

r r* r

r r* r

n

iii. If any other arcs led directly to y, divert them directly to the
zi’s.

CHAPTER 7. KLEENE’S THEOREM 7-7

iv. Need to make sure that all paths possible in the original TG
are still possible after the bypass operation.

• Example

w z

w z

1 3r (r r)* r42

1 3r r (r r)* r52 2

1 3r (r r)* r42 1 3r r (r r)* r52 2

w

x

y

z

r

r r

r

r

1

2 3

4

5

=>

=>

+

CHAPTER 7. KLEENE’S THEOREM 7-8

• Example:

Suppose we want to get rid of state y.

Need to account for all paths that go through state y.

There are arcs coming from x, w, and z going into y.

There are arcs from y to x and z.

Thus, we need to account for each possible path from a
state having an arc into y (i.e., x, w, z) to each state
having an arc from y (i.e., x, z)

Thus, we need to account for the paths from

∗ x to y to x, which has regular expression r1r
∗
2r5

∗ x to y to z, which has regular expression r1r
∗
2r3

∗ w to y to x, which has regular expression r7r
∗
2r5

∗ w to y to z, which has regular expression r7r
∗
2r3

∗ z to y to x, which has regular expression r6r
∗
2r5

∗ z to y to z, which has regular expression r6r
∗
2r3

Thus, after eliminating state y, we get the following:

v. Never delete the unique start or final state.

CHAPTER 7. KLEENE’S THEOREM 7-9

Example:

1 - 2 3

4 5 +

1 -

5 +

1 -

5 +

a

=>

abba

abb

bb

a+b

=>
a*(abba+abb+bb)(a+b)*

/\

/\ bb abb

a, b

ba ab a

CHAPTER 7. KLEENE’S THEOREM 7-10

Example:

=>

1 - 2 -

4 5 +

b b b

a
a

b a

a

3 +

a, b

3

4

b b b

a
a

b a

-

5

/\ /\

a

a+b

/\

/\

+

4

b

-=>

a

a

+
a(a+b)*

/\+b
bb*

bb*a(a+b)*

1 2

4

b

-

5

/\

a

a+b

/\

=>

bb*a

a

a

b

+

bb*2 2

CHAPTER 7. KLEENE’S THEOREM 7-11

4

b

-=>

a

+
a(a+b)*

/\+b

bb*(/\+a(a+b)*)

a(ba)*a(a+b)* + ab(ab)*bb*(/\+a(a+b)*)

=> -

+

=> a(ba)*a(a+b)* + ab(ab)*bb*(/\+a(a+b)*) (/\+b)((ab)*bb*(/\+a(a+b)*) + a(ba)*a(a+b)*) +

a(ba)*a(a+b)* + ab(ab)*bb*(/\+a(a+b)*)

(/\+b)((ab)*bb*(/\+a(a+b)*) + a(ba)*a(a+b)*)

4

b

-=>

a

a

+
a(a+b)*

/\+b

bb*(/\+a(a+b)*) 2 2

CHAPTER 7. KLEENE’S THEOREM 7-12

7.4 Proof of Part 3: RegExp ⇒ FA

To show: every language that can be defined by a regular expression can also
be defined by a FA.

We will do this by using a recursive definition and a constructive algorithm.

Recall

• every regular expression can be built up from the letters of the alphabet
and Λ and ∅.

• Also, given some existing regular expressions, we can build new regular
expressions by applying the following operations:

1. union (+)

2. concatenation

3. closure (Kleene star)

• We will not include r+ in our discussion here, but this will not be a
problem since r+ = rr∗.

CHAPTER 7. KLEENE’S THEOREM 7-13

Recall that we had the following recursive definition for regular expressions:

Rule 1: If x ∈ Σ, then x is a regular expression. ΛΛ is a regular expression. ∅
is a regular expression.

Rule 2: If r1 and r2 are regular expressions, then r1 + r2 is a regular expres-
sion.

Rule 3: If r1 and r2 are regular expressions, then r1r2 is a regular expression.

Rule 4: If r1 is a regular expression, then r∗1 is a regular expression.

Based on the above recursive definition for regular expressions, we have the
following recursive definition for FA’s associated with regular expressions:

Rule 1:

• There is an FA that accepts the language L defined by the regular
expression x; i.e., L = {x}, where x ∈ Σ, so language L consists of
only a single word and that word is the single letter x.

• There is an FA that accepts the language defined by regular expres-
sion ΛΛ; i.e., the language {Λ}.

• There is an FA defined by the regular expression ∅; i.e., the language
with no words, which is ∅.

Rule 2: If there is an FA called FA1 that accepts the language defined by
the regular expression r1 and there is an FA called FA2 that accepts the
language defined by the regular expression r2, then there is an FA called
FA3 that accepts the language defined by the regular expression r1 + r2.

Rule 3: If there is an FA called FA1 that accepts the language defined by
the regular expression r1 and there is an FA called FA2 that accepts the
language defined by the regular expression r2, then there is an FA called
FA3 that accepts the language defined by the regular expression r1r2,
which is the concatenation.

Rule 4: If there is an FA called FA1 that accepts the language defined by
the regular expression r1, then there is an FA called FA2 that accepts
the language defined by the regular expression r∗1.

CHAPTER 7. KLEENE’S THEOREM 7-14

Let’s now show that each of the rules hold by construction:

Rule 1: There is an FA that accepts the language L defined by the regular
expression x; i.e., L = {x}, where x ∈ Σ. There is an FA that ac-
cepts language defined by the regular expression ΛΛ. There is an FA that
accepts the language defined by the regular expression ∅.

• If x ∈ Σ, then the following FA accepts the language {x}:

- +

 - {x}

x

• An FA that accepts the language {Λ} is

+_

• An FA that accepts the language ∅ is

-

CHAPTER 7. KLEENE’S THEOREM 7-15

Rule 2: If there is an FA called FA1 that accepts the language defined by
the regular expression r1 and there is an FA called FA2 that accepts the
language defined by the regular expression r2, then there is an FA called
FA3 that accepts the language defined by the regular expression r1 + r2.

• Suppose regular expressions r1 and r2 are defined with respect to a
common alphabet Σ.

• Let L1 be the language generated by regular expression r1.

• L1 has finite automaton FA1.

• Let L2 be the language generated by regular expression r2.

• L2 has finite automaton FA2.

• Regular expression r1 + r2 generates the language L1 + L2.

• Recall L1 + L2 = {w ∈ Σ∗ : w ∈ L1 or w ∈ L2}.
• Thus, w ∈ L1 + L2 if and only if w is accepted by either FA1 or

FA2 (or both).

• We need FA3 to accept a string if the string is accepted by FA1 or
FA2 or both.

• We do this by constructing a new machine FA3 that simultaneously
keeps track of where the input would be if it were running on FA1

and where the input would be if it were running on FA2.

• Suppose FA1 has states x1, x2, . . . , xm, and FA2 has states y1, y2, . . . , yn.

• Assume that x1 is the start state of FA1 and that y1 is the start
state of FA2.

• We will create FA3 with states of the form (xi, yj).

• The number of states in FA3 is at most mn, where m is the number
of states in FA1 and n is the number of states in FA2.

• Each state in FA3 corresponds to a state in FA1 and a state in
FA2.

• FA3 accepts string w if and only if either FA1 or FA2 accepts w.

• So final states of FA3 are those states (x, y) such that x is a final
state of FA1 or y is a final state of FA2.

CHAPTER 7. KLEENE’S THEOREM 7-16

We use the following algorithm to construct FA3 from FA1 and FA2.

• Suppose that Σ is the alphabet for both FA1 and FA2.

• Given FA1 = (K1, Σ, π1, s1, F1) with

Set of states K1 = {x1, x2, . . . , xm}
s1 = x1 is the initial state

F1 ⊂ K1 is the set of final states of FA1.

π1 : K1 × Σ → K1 is the transition function for FA1.

• Given FA2 = (K2, Σ, π2, s2, F2) with

Set of states K2 = {y1, y2, . . . , yn}
s2 = y1 is the initial state

F2 ⊂ K2 is the set of final states of FA2.

π2 : K2 × Σ → K2 is the transition function for FA2.

• We then define FA3 = (K3, Σ, π3, s3, F3) with

Set of states K3 = K1 ×K2 = {(x, y) : x ∈ K1, y ∈ K2}
The alphabet of FA3 is Σ.

FA3 has transition function π3 : K3 × Σ → K3 with

π3((x, y), `) = (π1(x, `), π2(y, `)).

The initial state s3 = (s1, s2).

The set of final states

F3 = {(x, y) ∈ K1 ×K2 : x ∈ F1 or y ∈ F2}.

• Since K3 = K1×K2, the number of states in the new machine FA3

is |K3| = |K1| · |K2|.

But we can leave out a state (x, y) ∈ K1×K2 from K3 if (x, y)
is not reachable from FA3’s initial state (s1, s2).

This would result in fewer states in K3, but still we have |K1| ·
|K2| as an upper bound for |K3|; i.e., |K3| ≤ |K1| · |K2|.

CHAPTER 7. KLEENE’S THEOREM 7-17

Example: L1 = { words with b as second letter}
with regular expression r1 = (a + b)b(a + b)∗

L2 = { words with odd number of a’s}
with regular expression r2 = b∗a(b + ab∗a)∗

x1- x2 x3+

x4

a, b b

a

a, b

a, b
b a

a

by1- y2+

FA2 for L2:FA1 for L1:

x1,y1-
x2,y2+

x4,y1

x3,y2+

x4,y2+

a

b

b

a b

a a

b
a

a
b

b
a

b

FA3 for L1+L2:

x2,y1

x3,y1+

CHAPTER 7. KLEENE’S THEOREM 7-18

Rule 3: If there is an FA called FA1 that accepts the language defined by
the regular expression r1 and there is an FA called FA2 that accepts the
language defined by the regular expression r2, then there is an FA called
FA3 that accepts the language defined by the regular expression r1r2.

For this part,

• we need FA3 to accept a string if the string can be factored into
two substrings, where the first factor is accepted by FA1 and the
second factor is accepted by FA2.

• One problem is we don’t know when we reach the end of the first
factor and the beginning of the second factor.

Example: L1 = {words that end with aa}
with regular expression r1 = (a + b)∗aa
L2 = {words with odd length}
with regular expression r2 = (a + b)((a + b)(a + b))∗

Consider the string baaab.

If we factor it as (baa)(ab), then baa ∈ L1 but ab 6∈ L2.

However, another factorization, (baaa)(b), shows that baaab ∈
L1L2 since baaa ∈ L1 and b ∈ L2.

FA2 for L2:

y1- y2+

a, b

a, b

FA1 for L1:

x1- x2

x3+

b

a

b
a

ab

CHAPTER 7. KLEENE’S THEOREM 7-19

• Basically idea of building FA3 for L1L2 from FA1 for L1 and FA2

for L2:

Recall L1L2 = {w = w1w2 : w1 ∈ L1, w2 ∈ L2}.
So a string w is in L1L2 if and only if we can factor w = w1w2

such that w1 is accepted by FA1 and w2 is accepted by FA2.

FA3 initially acts like FA1.

When FA3 hits a
⊕

state of FA1,

∗ Start a version of FA2.

∗ Keep processing on FA1 and any previous versions of FA2.

We need to keep processing on FA1 because we don’t know
where the first factor w1 ends and the second factor w2 begins

Final states of FA3 are those states that have at least one final
state from FA2.

• More formally, we build machine FA3 in following way:

Suppose that FA1 and FA2 have the same alphabet Σ.

Let L1 be language generated by regular expression r1 and hav-
ing FA FA1 = (K1, Σ, π1, s1, F1).

Let L2 be language generated by regular expression r2 and hav-
ing FA FA2 = (K2, Σ, π2, s2, F2).

Definition: For any set S, define 2S to be the set of all possible
subsets of S.

Example: If S = {a, bb, ab}, then

2S = {∅, {a}, {bb}, {ab}, {a, bb}, {a, ab}, {bb, ab}, {a, bb, ab}}.

Fact: If |S| < ∞, then |2S| = 2|S|; i.e., there are 2|S| different
subsets of S.

Machine FA3 = (K3, Σ, π3, s3, F3) for L1L2 is as follows:

∗ States
K3 = {{x}+ Y : x ∈ K1, Y ∈ 2K2};

i.e., each state of FA3 is a set of states, where exactly one
of the states is from FA1 and the rest (possibly none) are
from FA2.

∗ Initial state s3 = {s1}; i.e., the initial state of FA3 is the
set consisting of only the initial state of FA1.

CHAPTER 7. KLEENE’S THEOREM 7-20

∗ Transition function π3 : K3 × Σ → K3 is defined as

π3({x, y1, . . . , yn}, `)

=

{
{π1(x, `), π2(y1, `), . . . , πn(y2, `)} if π1(x, `) 6∈ F1,
{π1(x, `), π2(y1, `), . . . , πn(y2, `), s2} if π1(x, `) ∈ F1,

where {x, y1, . . . , yn} ∈ K3, n ≥ 0, x ∈ K1, yi ∈ K2 for
i = 1, . . . , n, and ` ∈ Σ.

∗ Final states

F3 = {{x, y1, . . . , yn} : n ≥ 1, yi ∈ F2 for some i = 1, . . . , n}.

The number of states in FA3 is

|K3| = |K1| · |2K2| = |K1| · 2|K2|.

∗ Actually, we can leave out from K3 any states {x, y1, . . . , yn}
that are not reachable from the initial state s3.

∗ In this case, |K1| · 2|K2| still provides an upper bound for
|K3|; i.e., |K3| ≤ |K1| · 2|K2|.

CHAPTER 7. KLEENE’S THEOREM 7-21

Example: L1 = {words that end with aa}
with regular expression r1 = (a + b)∗aa
L2 = {words with odd length}
with regular expression r2 = (a + b)((a + b)(a + b))∗

FA2 for L2:

y1- y2+

a, b

a, b

FA1 for L1:

x1- x2

x3+

b

a

b
a

ab

b a

b
a

a

b a
b

a a

b

a b

ab

b

b

a

x1- x2

x3,y1x2,y2+

x1,y1 x1,y2+ x2,y1

x1,y1,y2+

x2,y2,y1+

x3,y2,y1+

FA3 for L1 L2:

b

a

CHAPTER 7. KLEENE’S THEOREM 7-22

Rule 4: If there is an FA called FA1 that accepts the language defined by
the regular expression r1, then there is an FA called FA2 that accepts
the language defined by the regular expression r∗1.

Basic idea of how to build machine FA2:

• Each state of FA2 corresponds to one or more states of FA1.

• FA2 initially acts like FA1.

• when FA2 hits a
⊕

state of FA1, then FA2 simultaneously keeps
track of how the rest of the string would be processed on FA1 from
where it left off and how the rest of the string would be processed
on FA1 starting in the start state.

• Whenever FA2 hits a
⊕

state of FA1, we have to start a new
process starting in the start state of FA1 (if no version of FA1 is
currently in its start state.)

• The final states of FA2 are those states which have a correspondence
to some final state of FA1.

• We need to be careful about making sure that FA2 accepts Λ.

• To have FA2 accept Λ, we make the start state of FA2 also a final
state.

• But we need to be careful when there are arcs going into the start
state of FA1.

CHAPTER 7. KLEENE’S THEOREM 7-23

Formally, we build the machine FA2 for L∗
1 as follows:

• Let L1 be language generated by regular expression r1 and having
finite automaton FA1 = (K1, Σ, π1, s1, F1).

• For now, assume that FA1 does not have any arcs entering the
initial state s1.

• Know that language L∗
1 is generated by regular expression r∗1.

• Define FA2 = (K2, Σ, π2, s2, F2) for L∗
1 with

States K2 = 2K1 .

Initial state s2 = {s1}.
Transition function π2 : K2 × Σ → K2 with

π2({x1, . . . , xn}, `)

=

{
{π1(x1, `), . . . , π1(xn, `)} if π1(xk, `) 6∈ F1 for all k = 1, . . . , n,
{π1(x1, `), . . . , π1(xn, `), s1} if π1(xk, `) ∈ F1 for some k = 1, . . . , n,

where {x1, . . . , xn} ∈ K2, n ≥ 1, xi ∈ K1 for all i = 1, . . . , n,
and ` ∈ Σ.

Final states

F2 = {s1}+{{x1, . . . , xn} : n ≥ 1, xi ∈ F1 for some i = 1, . . . , n}.

• The number of states in FA2 is

|K2| = |2K1| = 2|K1|.

Actually, we can leave out from K2 any state {x1, . . . , xn} that
is not reachable from the initial state s2.

In this case, 2|K1| still provides an upper bound for |K2|; i.e.,
|K3| ≤ 2|K1|.

CHAPTER 7. KLEENE’S THEOREM 7-24

Example: Consider language L having regular expression

r = (a + bb∗ab∗a)((b + ab∗a)b∗a)∗

b

x1+-

x4

x3

x2,x1+

x4,x2,x1+

x3,x4

x2,x1,x3+ x1,x2,x3,x4+

b a

b

b
a

b

a

a

b

a

a

a

a

b

b

FA for L*:

x1-

x2+

x3

x4

a

b

a a

b

b

a

b

FA for L:

CHAPTER 7. KLEENE’S THEOREM 7-25

Example: Consider language L having regular expression

(a + b)∗b

Need to be careful since we can return to the start state.

x1- x2+

b

b

FA for L:

a

a

If we blindly applied previous method for constructing FA for L∗, we
get the following:

x1+- x2,x1+

a

ba

b

Problem:

• Note that start state is final state.

• But this FA accepts a 6∈ L∗, and so this FA is incorrect.

• Problem occurs because we can return to start state in original FA,
and since we make the start state a final state in new FA.

CHAPTER 7. KLEENE’S THEOREM 7-26

Solution:

• Given original FA FA1 having arcs going into the initial state, cre-
ate an equivalent FA F̃A1 having no arcs going into the initial state
by splitting the original start state x1 of FA1 into two states x1.1

and x1.2

x1.1 is the new start state of F̃A1 and is never visited again
after the first letter of the input string is read.

x1.2 in F̃A1 corresponds to x1 after the first letter of the input
string is read.

• Then run algorithm to create FA for L∗ from the new FA F̃A1.

x1.2

a

b

a

x1.1+-

a

b

b

FA for L*:

x2, x1.1+

x2+

x1.1-

x1.2

a

b

b

a

new FA for L:

b

a

CHAPTER 7. KLEENE’S THEOREM 7-27

7.5 Nondeterministic Finite Automata

Definition: A nondeterministic finite automaton (NFA) is given by M =
(K, Σ, Π, s, F), where

1. K is a finite set of states.

• s ∈ K is the initial state, which is denoted pictorially by 	, and
there is exactly one initial state.

• F ⊂ K is a set of final states (possibly empty), where each final
state is denoted pictorially by

⊕
.

2. An alphabet Σ of possible input letters.

3. Π ⊂ K ×Σ×K is a finite set of transitions, where each transition (arc)
from one state to another state is labeled with a letter ` ∈ Σ. (We do
not allow for Λ to be the label of an arc since Λ is a string and not a
letter of Σ.) We allow for the possibility of more than one edge with the
same label from any state and there may be a state (or states) for which
certain input letters have no edge leaving that state.

CHAPTER 7. KLEENE’S THEOREM 7-28

Example:

b

a

a
b

b

a
a, b

b-

+

a

Note that

• definition of NFA is different from that of FA since

a FA must have from each state an arc labeled with each letter of
alphabet, while NFA does not.

a FA is deterministic, while a NFA may be nondetermisic.

An NFA can have repeated labels from any single state.

• NFA allows for human choice to become a factor in selecting a way to
process an input string.

• The definition of NFA is different from that of TG since

a TG can have arcs labeled with substrings of letters while a NFA
has arcs labeled with only letters.

a TG can have arcs labeled with Λ while a NFA cannot.

a TG can have more than one start state while a NFA can only
have one.

CHAPTER 7. KLEENE’S THEOREM 7-29

• Can transform any NFA with repeated labels from any single state to an
equivalent TG with no repeated labels from any single state.

1

3

4

5

b

a

b

b

2 . . .

. . .

. . .

. . .

=> 1

2

3

4

5

b

a

^

b

^

b

7.6 Properties of NFA

Theorem 7 FA = NFA; i.e., any language definable by a NFA is also defin-
able by a deterministic FA and vice versa.

Proof. Note that

• Every FA is an NFA since we can consider an FA to be an NFA without
the extra possible features.

• Every NFA is a TG.

• Kleene’s theorem states that every TG has an equivalent FA.

NFA useful because

• applications in artificial intelligence (AI).

CHAPTER 7. KLEENE’S THEOREM 7-30

• given two FA’s for two languages with regular expressions r1 and r2, it
is easy to construct an NFA to accept language corresponding to regular
expression r1 + r2.

CHAPTER 7. KLEENE’S THEOREM 7-31

Example:

b

a, b a

a, b

b

a, b

a

+ +

- - +

a

b

a

b

b

a

a, b

b

a, b a

a, b

b

a, b

a

+ +

- +

a

b

a

b

b

a

a, b

FA1: FA2:

NFA1+2

• This works when neither of the original FA’s has any arcs going into
their original initial states.

• If one or both of the original FA’s has an arc going into its original
initial state, the newly constructed FA for the language corresponding

CHAPTER 7. KLEENE’S THEOREM 7-32

to regular expression r1 + r2 may be incorrect. This is because the new
FA may process part of the word on one of the original FA’s and then
process the rest of the word on the other FA, and then incorrectly accept
the word.

