hci g

hci g



Browse the glossary using this index

Special | A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | ALL

R

R

A standard operator in a keystroke-level model (KLM), R represents the time a user spends waiting for the computer to respond. Only the time actually spent waiting—beyond any mental preparation time (M)—is included in R. R must be estimated for each computer system modeled.

representation

This can be seen as encoded information, either as a symbolic abstraction of a thing (classical cognitive science), or as a distributed set of nodes (PDP) that, together, have meaning. According to the representational theory of mind, human brains operate on symbolic representations, or codes. DCog extends this to show how transformations to representations need not be entirely symbolic, but may be enacted through manipulations on physical media that have a representational status (e.g., a navigational chart or a drawing).

representational state

This is defined by Hutchins (1995a, 117) as “a configuration of the elements in a medium that can be interpreted as a representation.” Problem solving occurs by successive rerepresentations of the problem (i.e., a representation of the problem) through a series of intermediate representational states into a solution (i.e., a representation of the solution). DCog researchers attempt to make the representational state of a functional system explicit and document how changes to its representational state result in goal-directed problem-solving activity.

requirements specification

a document listing and describing the features that a system under development is expected to provide